Cota Vera Swim Club for Homefed Corporation

to be constructed in Chula Vista, CA

Structural Calculations per 2022 CBC for Plan \# Segment 2
Harris \& Sloan Job \# HS22244

Initial Submittal Date: 1/13/2023

Design Loads

Gravity System

Gravity loads are summarized on the following pages, based on typical light framing and the details and specifications provided by the project architect. Loads are supported through plated wood trusses at the roof level and manufactured wood I-joists at the floor levels; framing members are supported on light-framed wood bearing walls, with wood beams and posts provided where required. Building loads are supported on a foundation designed in accordance with the recommendations of the project soils report.

Lateral Force-Resisting System

Wind design utilizes the directional procedure outlined in ASCE 7 chapter 27; seismic design is based on the Equivalent Lateral Force procedure outlined in ASCE 7 chapter 11 and chapter 12. Lateral loads are calculated in accordance with ASCE 7 using building geometry, gravity loads as determined above. Resistance to lateral forces is provided by wood shearwalls, with Simpson Steel Strong-walls provided at the first floor along the front of the garages. Lateral loads are transferred into the vertical elements of the Main Force Resisting System (MFRS) using horizontal wood diaphragms, with collectors provided along each line of lateral force resistance. Uplift forces at the wood shearwalls are resisted through metal strap holdowns at the third-to-second and second-to-first floor levels and metal holdowns at the foundation level.

The seismic dead loads were determined by combining the total dead load (21 psf at the roof; 15 psf at the floor) and a portion of the wall dead load perpendicular to the direction of the loading. The wall dead loads used (9 psf at the roof; 15 psf at the floor) are approximated based on the tributary area of the diaphragm. The wall dead load at the roof is a conservative estimate to account for gable end scenarios. This seismic dead load is separate from the dead load reduction used for overturning calculations per ASCE 7-16 §12.4.3.

Structural Calculation Package

Client Information

Homefed Corporation
1903 Wright Place, Suite 200
Carlsbad, CA 92008

Project Information
Cota Vera Swim Club
Chula Vista, CA
Plan No. Segment 2

Loading Information

Roof Loads		Floor Loads	
Roofing (Tile)	10.0 psf	Flooring	3.0 psf
Sheathing	1.8 psf	Sheathing	2.5 psf
Framing	2.5 psf	Framing	2.5 psf
Insulation	1.0 psf	Insulation	1.0 psf
Ceiling	2.5 psf	Ceiling	2.5 psf
Sprinklers	1.0 psf	Sprinklers	1.0 psf
Solar	1.2 psf	Misc.	2.5 psf
Misc.	1.0 psf		
Wall (Seismic only)	9.0 psf	Wall (Seismic only)	15.0 psf
Total DL	21.0 psf	Total DL	15.0 psf
Total DL (Seismic)	30.0 psf	Total DL (Seismic)	30.0 psf
Total LL	20.0 psf	Total LL	40.0 psf

Exterior Wall Loads

Stucco (7/8")	9.0 psf
Gyp Board (One Face)	2.5 psf
Sheathing (1/2")	1.7 psf
Framing (2x6)	1.3 psf
Insulation	1.0 psf
Misc	0.5 psf
Total DL	16.0 psf

Interior Wall Loads

Gyp Board (Ea Face)	5.0 psf
Framing (2x6)	1.0 psf
Insulation	1.0 psf
Misc	0.5 psf
Total DL	7.5 psf

Governing Building Codes \& Design Standards

- 2022 California Building Code

- ASCE 7-16	- PTI Manual, 6th Edition
-2018 NDS	- TMS 402/ACI530/ASCE 7
-2021 SDPWS	- AISC 360

Wind Design Per IBC/ASCE 7 Chapters 26, 27, \& 30

Building Information			Site Information	
Roof Pitch (worst case)	12.0	: 12 pitch	Basic Wind Speed (V)	96 mph
Mean Roof Height (h)		16.25 ft	Exposure Category	C (ASCE 7 26.7.3)
Directionality Factor (K_{d})		0.85 (ASCE 7 Table 26.6-1)	Hill Type	None
Gust Factor (G)		0.85 (ASCE 7 26.11.1)	Hill Height, (H)	NA ft
Risk Category		II (ASCE Table 1.5-1)	Hill Length, (L_{h})	NA ft
Site Elevation (z_{g})		0 ft	Distance to Peak, (x)	NA ft
Building Dimensions	Max	Min	K_{1}	0.000
Length (L)	30.5 ft .	24.2 ft .	K_{2}	1.000
Width (B)	71.0 ft .	16.5 ft .	$\mathrm{K}_{\text {e }}$	1.000

Principal Code Equations

ASCE 7 - Eqn 26.10-1 (MWFRS) ASCE 7 - Eqn 26.10-1 (C\&C)

$$
q_{z}=0.00256 K_{z} K_{z t} K_{d} K_{e} V^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right) ; V \text { in } \mathrm{mi} / \mathrm{h}
$$

ASCE 7 - Eqn 28.3-1 (MWFRS) ASCE 7 - Eqn30.3-1 (C\&C)

$$
p=q G C_{p}-q_{i}\left(G C_{p i}\right)\left(\mathrm{lb} / \mathrm{ft}^{2}\right)
$$

$$
p=q_{h}\left[\left(G C_{p}\right)-\left(G C_{p i}\right)\right]\left(\mathrm{lb} / \mathrm{ft}^{2}\right)
$$

ASCE 7 - Figure 26.8-1 Eqns (Topo Effects)

$$
\begin{gathered}
\mathrm{K}_{\mathrm{zt}}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{2} \\
\mathrm{~K}_{2}=\left(1-\frac{|\mathrm{x}|}{\mu \mathrm{L}_{\mathrm{h}}}\right) \quad \mathrm{K}_{3}=\mathrm{e}^{-\gamma \mathrm{z} / \mathrm{L}_{\mathrm{h}}}
\end{gathered}
$$

Velocity Pressures by Height

Adjustment Factors \& Pressures by Height						
Heignt	Height Factors	MWFRS		Comp's and Cladding		
$\frac{\mathrm{z}(\mathrm{ft})}{}$	$\underline{\mathrm{K}_{3}}$	$\underline{\mathrm{~K}_{\mathrm{zt}}}$	$\underline{\mathrm{K}_{7}}$	$\underline{\mathrm{q}_{7}(\mathrm{psf})}$	$\underline{\mathrm{K}_{7}}$	$\underline{\mathrm{q}_{7}(\mathrm{psf})}$
15	1.000	1.000	0.849	10.21	0.849	10.21
15.16	1.000	1.000	0.851	10.24	0.851	10.24
15.31	1.000	1.000	0.853	10.26	0.853	10.26
15.47	1.000	1.000	0.854	10.28	0.854	10.28
15.63	1.000	1.000	0.856	10.30	0.856	10.30
15.78	1.000	1.000	0.858	10.32	0.858	10.32
15.94	1.000	1.000	0.860	10.35	0.860	10.35
16.09	1.000	1.000	0.862	10.37	0.862	10.37
16.25	1.000	1.000	0.863	10.39	0.863	10.39
21	1.000	1.000	0.913	10.99	0.913	10.99

K_{z} Per ASCE 7 Table 26.10-1; K_{zt} Per ASCE 7 Figure 26.8-1
Pressure at Mean Roof Height, qh $=\quad 10.4 \mathrm{psf} \quad$ (MWFRS)
Pressure at Mean Roof Height, qh $=\quad 10.4 \mathrm{psf} \quad(\mathrm{C} \mathrm{\& C})$
Horizontal Wind Pressures, C\&C
Horizontal wind pressures used for the design of the component and cladding elements are determined using the procedure outlined in ASCE 7, Chapter 30

Walls (Components \& Cladding)									
Stud Height (ft)	Min Stud		GCp (min)		GCp (max)		Gcpi	p (psf)	
8	12	-1.04	-1.28	1.00	1.00	-0.18	12.69	15.21	
9	12	-1.02	-1.25	1.00	1.00	-0.18	12.51	14.83	
10	12	-1.01	-1.22	1.00	1.00	-0.18	12.34	14.49	
11	12	-0.99	-1.19	0.99	0.99	-0.18	12.19	14.19	
12	12	-0.98	-1.16	0.99	0.99	-0.18	12.11	13.91	
15	12	-0.95	-1.09	0.97	0.97	-0.18	11.93	13.20	
19	12	-0.91	-1.02	0.95	0.95	-0.18	11.75	12.45	

22	12	-0.89	-0.97	0.94	0.94	-0.18	11.63	11.98

Horizontal Wind Pressures, MWFRS

Horizontal wind pressures used for the design of the main wind force resisting system are determined using the directional procedure outlined in ASCE 7, Chapter 27

Horizontal Wind Coefficients by Surface, Cp						
Direction	Walls		Pitched Roof			Parapet
	Left-Right	Front-Back		Eith	tion	
$\mathrm{L} / \mathrm{B}_{\text {min }}, \mathrm{H} / \mathrm{L}_{\text {max }}$	0.54	0.34	0.25	0.50	1.00	N/A
Windward $_{1}$	0.8	0.8	0.00	0.00	0.00	1.50
Windward 2	0.8	0.8	0.40	0.40	0.30	1.50
Leeward	-0.50	-0.5	-0.60	-0.60	-0.60	-1.00
Total	1.30	1.3	1.00	1.00	0.90	2.50

Wind Pressure by Surface \& Height								
Height	Single-Sided Wind			Two-Sided (Standard) Wind				Parapet
	Walls	Pitched Roof		Walls		Pitched Roof		
		Left-Right	Front-Back	Left-Right	Front-Back	Left-Right	Front-Back	
15	8.82	5.21	5.21	11.36	11.36	8.83	8.83	21.71
15	8.83	5.22	5.22	11.38	11.38	8.83	8.83	21.75
15	8.85	5.23	5.23	11.39	11.39	8.83	8.83	21.80
15	8.86	5.24	5.24	11.41	11.41	8.83	8.82	21.85
16	8.88	5.25	5.25	11.42	11.42	8.83	8.81	21.89
16	8.89	5.27	5.27	11.44	11.44	8.83	8.80	21.94
16	8.90	5.28	5.28	11.45	11.45	8.83	8.79	21.98
16	8.92	5.29	5.29	11.46	11.46	8.83	8.78	22.03
16	8.93	5.30	5.30	11.48	11.48	8.83	8.77	22.07
21	9.34	5.61	5.61	11.89	11.89	8.83	8.48	23.36

Vertical Wind Pressures, MWFRS

Calculation of roof dead load available to offset overturning of shearwalls.

Avg. Pressure Coeff. (C_{p})
Int. Pressure Coeff. (GCpi)
Wind Uplift Pressure (p)

Controlling Load Combo
Net pressure from Roof
-0.48
-0.18 (ASCE 7 Table 26.13-1)
$-7 \mathrm{psf}$
0.6D+0.6W (ASCE 72.4 .1)
5.7 psf Available to offset overturning from wind

Calculation comparing C\&C Wind Loads to capacity of roofing nails in withdrawal
Calculation does not account for any dead load and assumes smooth shank stainless steel roof nails (worst-case).
Worst-Case Ext. Pressure Coeff. (GCpi) -3.60 (ASCE 7 Figure 30.3-2B)
Wind Uplift Pressure (p) -39.3 psf
Net Uplift on 4'x8' piece of shtg -1256 lbs
\# of nails in a 4'x8' piece of shtg nailed at 6" oc edge, 12" oc field 57 nails
Per NDS Table 12.2D, 8d nails are good for $22 \mathrm{lb} /$ inch in withdrawal
Assuming 23/32" roof shtg (worst-case), ea nail will have $1.78^{\prime \prime}$ penetration 39.2 lbs per nail
Therefore, $4^{\prime} \times 8^{\prime}$ piece of roof shtg is capable of withstanding 2232 lbs in uplift
12 " oc field nailing
OK

Seismic Design Per IBC Section 1613 \& ASCE 7 Chapters 11 \& 12

Building Information		Site Information	
	6.50 ASCE Table 12.2-1	S_{s}	0.754 IBC Sect. 1613.3.1
Risk Category	II ASCE Table 1.5-1	S_{1}	0.275 IBC Sect. 1613.1.1
Number of Stories	1	Site Class	C
Importance Factor	1.0		
Structural Height	10 ft		
Design Approach	Equivalent Lateral Force		

Seismic Loads: ASCE 7 Section 12.8 Equivalent Lateral Force Procedure

Seismic Loads: ASCE 7 Section 12.8 Equivalent Lateral Force Procedure

Principal Code Equations

ASCE Eqn. 12.8-11 ASCE Eqn. 12.8-12 ASCE Eqn. 12.10-1 \quad ASCE Eqn. 12.10-2 \quad ASCE Eqn. 12.10-3

$$
F_{x}=C_{v x} V \quad C_{v x}=\frac{w_{x} h_{x}^{k}}{\sum_{i=1}^{n} w_{i} h_{i}^{k}} \quad F_{p x}=\frac{\sum_{i=x}^{n} F_{i}}{\sum_{i=x}^{n} w_{i}} w_{p x} \quad F_{p x}=0.2 S_{D s} I_{e} w_{p x} \quad F_{p x}=0.4 S_{D s} I_{e} w_{p x}
$$

Vertical Shear Distribution

Vertical distribution of shear is per ASCE 7 Eqn 12.8-12. The total force at each level ($F_{p x}$) is distributed to each line of lateral force-resistance based on the seismic weigh tributary to that line of resistance (wx)

Vertical Force Distribution							
Level	h (ft)	Area (sq ft)	DL (psf)	$\mathrm{w}_{\mathrm{x}}(\mathrm{lb})$	$\mathrm{w}_{\mathrm{x}} \times \mathrm{h}$	$\mathrm{C}_{v x}$	F_{x}
1	16.25	1973	30	59190	961837.5	1.0000	3845 lb
Totals		1973		59190	961837.5		3845 Ib

Diaphragm Forces

Diaphragm shear loads are determined per ASCE 7 Eqn 12.10-1 through 12.10-3. The total force at each level ($F_{p x}$) is distributed to each line of lateral force-resistance based on the seismic weigh tributary to that line of resistance (wx).

Diaphragm Forces							
Story	Fx	$\sum \mathrm{Fi}$	$\mathrm{w}_{\mathrm{x}}(\mathrm{lb})$	$\sum \mathrm{wi}$	$\sum \mathrm{Fi} / \sum \mathrm{wi}$	$\mathrm{F}_{\mathrm{px}}(\mathrm{lb})$	$\%$ of F_{x}
1	3845 lb	3845 lb	59190 lb	59190 lb	0.0650	4998 lb	130%

Typical Header Capacities (plf)

The following table is a summary of the maximum amount of load a typical header can take in pounds per linear foot. These capacities are based on analysis using Enercalc software in which each of the typical headers is loaded to the point before failure. Full calculations supporting the capacity table are available upon request.

Header Size/ Span	3 ft	5 ft	6 ft
$(2) 2 \times 6$	1190	440	310
$(2) 2 \times 8$	1920	710	494
$(2) 2 \times 10$	2850	1050	740
$(2) 1.25 \times 9.51 .3 \mathrm{E} \mathrm{SCL}$	4240	1550	1070
4×4	650	240	125
4×6	1390	520	360
4×8	2420	900	630
4×10	3640	1340	940
$3.5 \times 9.51 .5 \mathrm{E} \mathrm{SCL}$	7910	2940	2040
$4 \times 6 \mathrm{flat}$	890	330	200
6×6	2260	840	580
6×8	4200	1560	1080
6×10	7500	2800	1960

Typical Header Specifications
Below are calculations for typical headers based on the capacity table above. Note that header capacities highlighted in red symbolize the demand load exceeding capacity.

1st Floor Bearing Wall Headers								
Opening	Tributary Widths			Total Load		Header		Trimmers
	Roof	Floor	Walls	Distributed	Reaction	Size	Capacity	
3 ft	13 ft	0 ft	0	533 plf	800 \#	$\begin{gathered} \hline \text { (2) } 2 \times 6 \\ 4 \times 6 \\ 6 \times 6 \end{gathered}$	$\begin{aligned} & 1190 \mathrm{plf} \\ & 1390 \mathrm{plf} \\ & 2260 \mathrm{plf} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
5 ft	13 ft	0 ft	0	533 plf	1333 \#	$\begin{gathered} \hline \text { (2) } 2 \times 8 \\ 4 \times 8 \\ 6 \times 6 \\ \hline \end{gathered}$	710 plf 900 plf 840 plf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
6 ft	13 ft	0 ft	0	533 plf	1599 \#	$\begin{gathered} \text { (2) } 2 \times 10 \\ 4 \times 8 \\ 6 \times 8 \\ \hline \end{gathered}$	$\begin{gathered} 740 \mathrm{plf} \\ 630 \mathrm{plf} \\ 1080 \mathrm{plf} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$

Beam Calculation Summary

Simply supported beams have been designed using the shear and bending equations outlined in the NDS. The beam analysis allows for three distributed loads based on tributary wall/root/floor widths $\left(W_{A}-W_{C}\right)$, one trapezoidal load ($\left.W_{D 1} / W_{D 2}\right)$, as well as six point loads ($P_{A}-P_{F}$). This beam analysis allows for a simply supported beam with a left and right cantilever. Based on the input loads, the applicable hanger/post/trimmer is shown for each individual beam. The beam analysis also outputs the unfactored reactions, stresses and deflections at the bottom of each beam. See below for a sample beam. For 24F-V4 Glulam beams, the total deflection displayed accounts for a built in camber assuming a 3500 ' radius.

Sample Beam Calculation Comparison

H\&S Calculation Package

Enercalc

Wood Beam Design : Sample Beam Calculation

Load Combination Comparison

Load combinations used in H\&S calculation package uses the same load combinations in Enercalc. The reactions listed in the H\&S calculation package output are provided at service level, and all supports for the beam are designed using the appropriate CBC and ASCE 7 load combinations.

H\&S Calculation Package

CBC Section 1605.3.1, Load Combinations						
Equations 12-2/14/16 are modified per ASCE7-10 12.4.2.3						
Equation	D	L	$\mathrm{L}_{\mathrm{R}} /$ Snow	E	W	
$16-9$	1	1				
$16-10$	1		1			
$16-11$	1	0.75	0.75			
$16-12-1$	1				0.6	$-4-10^{\prime \prime}$
$16-12-2$	1.07007			0.7		$-5-11^{\prime \prime}$
$16-13$	1	0.75	0.75		0.45	$-6-12^{\prime \prime}$
$16-14$	1.07007	0.75	0.75	0.525		$-7-13^{\prime \prime}$
$16-15$	0.6				0.6	$-8-14^{\prime \prime}$
$16-16$	0.52993			0.7		$-9-15^{\prime \prime}$

Enercalc

Run	Load Combination	Cd	head Loar 0.2 -SDS*		Roof Live	Floor Live	Snow	Wind	Seismic		Earth
			Factor	smic Fac					Factor	Rho	
Yes	+D+H	0.900	1.000								1.000
Yes	$+\mathrm{D}+\mathrm{L}+\mathrm{H}$	1.000	1.000			1.000					1.000
Yes	$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$	1.250	1.000		1.000						1.000
Yes	+D+S+H	1.150	1.000				1.000				1.000
Yes	$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$	1.250	1.000		0.750	0.750					1.000
Yes	+D+0.750L+0.750S+H	1.150	1.000			0.750	0.750				1.000
Yes	$+\mathrm{D}+\mathrm{W}+\mathrm{H}$	1.600	1.000					1.000			1.000
Yes	+1.210D $+2.50 \mathrm{E}+\mathrm{H}$	1.600	1.210						2.500	1.000	1.000
Yes	$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.750 \mathrm{~W}+\mathrm{H}$	1.600	1.000		0.750	0.750		0.750			1.000
Yes	+D $+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.750 \mathrm{~W}+\mathrm{H}$	1.600	1.000			0.750	0.750	0.750			1.000
Yes	+1.158D $+0.750 \mathrm{~L}+0.750 \mathrm{~S}+1.875 \mathrm{E}+\mathrm{H}$	1.600	1.158			0.750	0.750		1.875	1.000	1.000
Yes	$+0.60 \mathrm{D}+\mathrm{W}+0.60 \mathrm{H}$	1.600	0.600					1.000			0.600
Yes	$+0.390 \mathrm{D}+2.50 \mathrm{E}+0.390 \mathrm{H}$	1.600	0.390						2.500	1.000	0.390
Yes	+1.210D $+1.920 \mathrm{E}+\mathrm{H}$	1.600	1.210						1.920	1.000	1.000
Yes	$+1.158 \mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+1.442 \mathrm{E}+\mathrm{H}$	1.600	1.158			0.750	0.750		1.442	1.000	1.000
Yes	$+0.390 \mathrm{D}+1.920 \mathrm{E}+0.390 \mathrm{H}$	1.600	0.390						1.920	1.000	0.390
Yes	+1.210D	0.900	1.210								

Beam Calculations

Center L-R header at rear of Shower -4×6 No. 2 Lumber with (1) $2 x$ trimmer at left \& (1) $2 x$ trimmer at right

		Lumber						Spans						Bracing		Support Condition				
		Size		Grade		Type		Left Cant.		Main		Right Cant.		Braced?		Left	trimmer		KN	
		4×6		No. 2		Lumber		0.0		7.3		0.0		No		Right	trimmer		KN	-
		Distributed Loads											Point Loads (lbs)							
		Location			Tributary Lengths (ft)			Distributed Loads (plf)					Location		D	L	Lr	E	W	S
			Start	End	Wall	Roof	Floor	Alt Fir	D	L	Lr	S	P_{A}							
		$\mathrm{w}_{\text {A }}$		7.3		4.0			84	0	80	0	P_{B}							
		$\mathrm{w}_{\text {B }}$							0	0	0	0	P_{C}							
		w_{C}							0	0	0	0	P_{D}							
		$\mathrm{w}_{\mathrm{D} 1}$							0	0	0	0	P_{E}							
		$\mathrm{w}_{\mathrm{D} 2}$							0	0	0	0	P_{F}							
$\stackrel{\square}{ \pm}$				facto	Re	ctions							ses					Deflectio	(in)	
$\stackrel{\stackrel{\rightharpoonup}{0}}{\substack{0}}$	道		D	L	Lr	E	W	S			f	F	D/C	@ (ft)		L-C		$\Delta_{\text {act }}$	$\Delta_{\text {all }}$	@ (ft)
	$\left\|\begin{array}{\|} \bar{\infty} \\ \underset{\sim}{2} \end{array}\right\|$	Left	305	0	290	0	0	0	shear		46	225	0.21	0.0		16-10	$\Delta \mathrm{LL}$	-0.064	-0.181	3.6
		Right	305	0	290	0	0	0	bending		733	1450	0.51	3.6		16-10	$\Delta \mathrm{TL}$	-0.131	-0.242	3.6

L-R header at rear of Janitor -6×6 No. 1 (P-T) Lumber with (1) $2 x$ trimmer at left \& (1) $2 x$ trimmer at right

		Lumber						Spans						Bracing		Support Condition				
		Size		Grade		Type		Left Cant.		Main		Right Cant.		Braced?		Left	trimmer		KN	-
			$\times 6$	No.	(P-T)				0							Right		mmer	KN	-
흔		Distributed Loads											Point Loads (lbs)							
¢		Location			Tributary Lengths (ft)			Distributed Loads (plf)					Location		D	L	Lr	E	W	S
$\stackrel{\square}{0}$			Start	End	Wall	Roof	Floor	Alt Flr	D	L	Lr	S	P_{A}							
¢		$\mathrm{w}_{\text {A }}$	0.0	6.8		2.0			42	0	40	0	P_{B}							
-		$\mathrm{w}_{\text {B }}$							0	0	0	0	P_{C}							
-		w_{C}							0	0	0	0	P_{D}							
®		$\mathrm{w}_{\text {D1 }}$							0	0	0	0	P_{E}							
$\stackrel{\square}{\sim}$		$\mathrm{w}_{\mathrm{D} 2}$							0	0	0	0	P_{F}							
-				cto	Re	ctions							ses					Deflection	(in)	
	$\frac{4}{5}$		D	L	Lr	E	W	S			f	F	D/C	@ (ft)		L-C		$\Delta_{\text {act }}$	$\Delta_{\text {all }}$	@ (ft)
	$\underset{\sim}{\infty}$	Left	142	0	135	0	0	0	shear		14	213	0.06	0.0		16-10	$\Delta \mathrm{LL}$	-0.015	-0.169	3.4
		Right	142	0	135	0	0	0	bending		202	1495	0.14	3.4		16-10	$\Delta \mathrm{TL}$	-0.031	-0.225	3.4

Beam Calculations

Left and Right L-R Hdr @ Rear of Shower - 4×6 No. 2 Lumber with (1) $2 x$ trimmer at left \& (1) $2 x$ trimmer at right

$\begin{array}{\|c\|} \hline \frac{1}{\omega} \\ \sum_{0} \\ \frac{1}{x} \end{array} .$		Lumber						Spans						Bracing		Support Condition				
		Size		Grade		Type		Left Cant.		Main		Right Cant.		Braced?		Left	trimmer		KN	-
		4×6		No. 2		Lumber		0.0		5.4		0.0		No		Right	trimmer		KN	-
¢		Distributed Loads											Point Loads (lbs)							
		Location			Tributary Lengths (ft)			Distributed Loads (plf)					Location		D	L	Lr	E	W	S
			Start	End	Wall	Roof	Floor	Alt Flr	D	L	Lr	S	P_{A}							
		$\mathrm{w}_{\text {A }}$	0.0	5.4		4.0			84	0	80	0	P_{B}							
		w_{B}							0	0	0	0	P_{C}							
		w_{C}							0	0	0	0	P_{D}							
		$\mathrm{W}_{\mathrm{D} 1}$							0	0	0	0	P_{E}							
		$\mathrm{w}_{\mathrm{D} 2}$							0	0	0	0	P_{F}							
-				actor	Rea	tions							ses					Deflecti	(in)	
ธิ	$\frac{5}{5}$		D	L	Lr	E	W	S			f	F	D/C	@ (ft)		L-C		$\Delta_{\text {act }}$	$\Delta_{\text {all }}$	@ (ft)
$\frac{\Phi}{0}$		Left	228	0	217	0	0	0	shear		35	225	0.15	0.0		16-10	$\Delta \mathrm{LL}$	-0.020	-0.136	2.7
		Right	228	0	217	0	0	0	bending		410	1453	0.28	2.7		16-10	$\Delta \mathrm{TL}$	-0.041	-0.181	2.7

L-R Hdr @ Front of Electrical Equipment Closet -6×6 No. 1 (P-T) Lumber with (1) $2 x$ trimmer at left \& (1) $2 x$ trimmer at right

		Lumber						Spans						Bracing Braced?		Support Condition				
		Size		Grade		Type		Left Cant.		Main		Right Cant.				Left	trimmer		KN	-
		6×6		No. 1 (P-T)		Lumber		0.0		6.3		0.0		No		Right	trimmer		KN	-
		Distributed Loads											Point Loads (lbs)							
		Location			Tributary Lengths (tt)			Distributed Loads (plf)					Location		D	L	Lr	E	W	S
			Start	End	Wall	Roof	Floor	Alt FIr	D	L	Lr	S	P_{A}							
		$\mathrm{w}_{\text {A }}$	0.0	6.3		2.5			53	0	50	0	P_{B}							
		$\mathrm{w}_{\text {B }}$							0	0	0	0	P_{C}							
		w_{c}							0	0	0	0	P_{D}							
		$\mathrm{w}_{\mathrm{D} 1}$							0	0	0	0	P_{E}							
		$\mathrm{w}_{\mathrm{D} 2}$							0	0	0	0	P_{F}							
(8)				factor	red Rea	ctions							esses					Deflection	on (in)	
후	$\frac{9}{3}$		D	L	Lr	E	W	S			f	F	D/C	@ (ft)		L-C		$\Delta_{\text {act }}$	$\Delta_{\text {all }}$	@ (ft)
	¢	Left	164	0	156	0	0	0	shear		16	213	0.07	0.0		16-10	$\Delta L L$	-0.014	-0.156	3.1
\pm		Right	164	0	156	0	0	0	bending		217	1496	0.14	3.1		16-10	$\Delta \mathrm{TL}$	-0.029	-0.208	3.1

harris \& sloan

		Key Note	Specification	Downward Capacity (Lb)			Uplift (Lb)
				Floor	Snow	Roof	
$\stackrel{\square}{4}$							
	$\begin{gathered} \overline{\widetilde{x}} \\ \stackrel{\rightharpoonup}{\lambda} \\ \end{gathered}$						
-	$\begin{array}{\|l\|l} \varepsilon \\ 0 \\ 0.0 \\ 0 \\ 0 \end{array}$						

Notes

The Floor/Snow/Roof capacities listed are for a Cd factor of 1.0, 1.15, 1.25 respectively. If the max demand on a hanger is based on a Cd factor of 1.6 , the roof capacity ($\mathrm{Cd}=1.25$) is used. The uplift value correlates to a Cd factor of 1.6

Post Capacities (Pounds)

4" Wall Width								
KN	Post Size	8'	9'	10'	12'	15'	20'	21'
5	Double 2x Stud Post	1701	2300	1880	893	N/A	N/A	N/A
-	Single 2x Trimmer	3281	3281	3281	3281	N/A	N/A	N/A
5 C	Double 2x Trimmer	6563	6563	6563	6563	N/A	N/A	N/A
6	4X4 Post	6603	5268	4263	2928	N/A	N/A	N/A
6C	4X4 Trimmer	7656	7656	7656	7656	N/A	N/A	N/A
7	4X6 (W) Post	10280	8201	6641	4562	N/A	N/A	N/A
7C	4X6 (W) Trimmer	12031	12031	12031	12031	N/A	N/A	N/A
8	4X8 Post	13474	10784	8754	5989	N/A	N/A	N/A
8C	4X8 Trimmer	15859	15859	15859	15859	N/A	N/A	N/A
8E	4X10 Post	17062	13662	11105	7608	N/A	N/A	N/A
8G	4X12 Post	20672	16538	13466	9214	N/A	N/A	N/A

$\mathbf{6}^{\prime \prime}$ Wall Width								
KN	Post Size	8^{\prime}	9^{\prime}	10^{\prime}	12^{\prime}	15^{\prime}	20^{\prime}	21^{\prime}
5A	Single 2x Stud Post	5156	4216	3086	1469	N/A	N/A	N/A
5	Double 2x Stud Post	10313	10313	9026	5709	2855	594	314
-	Single 2x Trimmer	5156	5156	5156	5156	5156	5156	5156
5C	Double 2x Trimmer	10313	10313	10313	10313	10313	10313	10313
7	4X6 (S) Post	12031	12031	12031	11242	7354	4062	3658
7C	4X6 (S) Trimmer	12031	12031	12031	12031	12031	12031	12031
9	6X6 Post	18906	18906	18906	16426	11314	6443	5838
9 9C	6X8 Post	25781	25781	25781	22358	15386	8745	7879
9D	6X10 Post	32656	32656	32656	27745	19385	11077	10032
9E	6X12 Post	39531	39531	39531	33523	23403	13409	12081

Notes

1) Loads are limited by the lesser of the buckling load and the bearing capacity, $\mathrm{Cd}=1.0$
2) Buckling loads are designed w/ 5 psf code minimum lateral load applied to the surface of the post only. Adjacent studs take the tributary loads of the wall. See exception under note 5.
3) Trimmer loads are designed for the adjacent king post to prevent buckling in the trimmer and therefore the loads are based on bearing capacity only.
4) $2 x$ posts/studs are designed for the strong axis loading only. 2×4 posts/studs are calculated as stud grade at 8', DFL \#2 at 9', and DFL\#1 for 10' and 12'. $2 x 6$ posts are calculated as DFL \#2. All post heights 12' and lower are designed for both 2×4 and 2×6 walls. All post heights greter than 12 are based on 2×6 walls only.
5) $2 x$ and Dbl. $2 x$ studs have 16 " lateral tributary area and were designed with the $C \& C$ wind load from a 30.5^{\prime} tall bulding. They may double as posts and standard stud spacing.
6) King posts need to be checked w/ location specific tributary loads and not using this chart.
7) (W) signifies weak and (S) signifies strong axis loading.

Top Plate Capacity - 2018 NDS

Design Equations

Bending:
Allowable Bending Stress: $\quad F_{b}{ }^{\prime}=C_{D} C_{F} C_{f u} F_{b} \quad$ Applied Bending Stress: $\quad f_{b}=M / S=[P l / 6] / S^{*}$

* Moment equation based on semi-rigid end fixity

Allowable Point Load on Top Plates: $\quad \mathrm{P} \leq 6 \mathrm{~F}_{\mathrm{b}}{ }^{\prime} \mathrm{S} / 1$
Shear:
Allowable Shear Stress: $\quad F_{V}{ }^{\prime}=C_{D} F_{V}$
Applied Shear Stress:
$\mathrm{f}_{\mathrm{V}}=1.5 \mathrm{~V} / \mathrm{A}$

* Maximum shear occurs at "d" from support, eqn based on semi-continous plates
Allowable Point Load on Top Plates: $\mathrm{P} \leq \mathrm{F}_{\mathrm{V}}{ }^{\prime} \mathrm{A} / 1.5 \mathrm{~V}$
Properties \& Layout

Top plate size:	$2-2 \times 4$	$2-2 \times 6$
Top plate species/grade:	$\mathrm{DF} \mathrm{\# 2}$	$\mathrm{DF} \mathrm{\# 2}$
Load Duration Factor, $\mathrm{C}_{\mathrm{D}}:$	1.25	1.25
Size Factor, $\mathrm{C}_{\mathrm{F}}:$	1.50	1.30
Flat Use Factor, $\mathrm{C}_{\mathrm{fu}}:$	1.1	1.15
Bending stress, $\mathrm{F}_{\mathrm{b}}:$	900 psi	900 psi
Bending stress, F_{b} :	1856 psi	1682 psi
Shear stress, $\mathrm{F}_{\mathrm{v}}:$	180 psi	180 psi
Shear stress, $\mathrm{F}_{\mathrm{v}}:$	225 psi	225 psi

Top Plate Bearing Capacity

Top Plate Size	Stud Specs	Top Plate Span	b	d	P (shear)	P (bending)	Pmax	Max Continuous Truss Span
$2-2 \times 4$	16" oc	14.5"		$3 "$	2147\#	2016\#	2016\#	40.0 ft
2-2x4	$12^{\prime \prime}$ oc	10.5 "	3.5	3	2384\#	2784\#	2384\#	47.0 ft
2-2x6	$\begin{aligned} & 16 \text { " oc } \\ & 12 \text { " oc } \end{aligned}$	$\begin{aligned} & \hline 14.5^{\prime \prime} \\ & 10.5^{\prime \prime} \end{aligned}$	5.5'	3.0 "	$\begin{aligned} & \hline 3374 \# \\ & 3746 \# \end{aligned}$	$\begin{aligned} & \hline 2871 \# \\ & 3964 \# \end{aligned}$	$\begin{aligned} & \hline 2871 \# \\ & 3746 \# \\ & \hline \end{aligned}$	$\begin{aligned} & 57.0 \mathrm{ft} \\ & >60 \mathrm{ft} \end{aligned}$

Top Plate Lateral Capacity

Typical plate splice: (24) 16d nails, (12) nails each side of splice

$$
\begin{aligned}
\text { Nailing Splice Capacity }=4531 \# & (118 \# / \text { nail }) \times(1.6 \text { duration factor }) \times(24 \text { nails }) \\
\text { TP Tension Capacity }=7245 \# & (1.5 " \times 3.5 ") \times(1.6 \text { duration factor }) \times(1.5 \text { size factor }) \times\left(575 \mathrm{psf} F_{\mathrm{t}}\right)
\end{aligned}
$$

TP Compression Capacity $=4600 \#$
Note: plates are braced along the strong axis at no more than 24 " on-center by connection to the floor/roof framing members, and along the weak axis at no more than 16 " on-center by the connections to the studs.

Design Top Plate Capacity =
4531\#

Typical Ledger Sizes \& Connections

16d Nail Capacity
1/4" x 3 1/2" SDS Capacity

118 lb (per NDS Ch.11)
340 lb (per ESR-2236)

Ledger Capacity \& Max Supported Spans								
Ledger Specification	Ledger Size	Connection to Rim/Bm		Connection to Stud		Capacity (plf)	Max Supported Span (ft)	
		\#/ft	Spec	\#	Spec		Roof	Floor
Typical 2x6	2x6	4	16d	3	16d	265.5	12	9
KN 12	2×6	4	16d	4	16d	354	17	12
KN 12A	2x8	6	16d	6	16d	531	25	19
KN 12B	2×10	8	16d	4	$1 / 4$ " $\times 31 /{ }^{1}{ }^{\prime \prime}$ SDS	944	46	34
KN 12F	13/4" wide	8	16d	5	$1 / 4$ " $\times 31 / 2{ }^{1}$ " SDS	944	--	34

FOUNDATION BY OTHERS

King Stud Calculations

King stud calculations include deflection checked with 42% of strength level wind for noted deflection limit and 60% of strength level wind for deflection limit outlined in section 1604.3.7.
The wind pressures noted already account for the 60% of stregth level wind (conversion from strength to ASD).
The calculations below support the king stud schedules shown on the plans

Principal Code Equations \& General Data

$$
\mathrm{M}^{\prime}=\mathrm{F}_{\mathrm{b}}^{\prime} \mathrm{S} \quad \Delta=\frac{5 w \ell^{4}}{384 E I}
$$

Load Duration Factor (Wind):
1.6

Stud Calculations by Plate Height \& Opening Width (2x4 Walls, L/360 Deflection Limit)

9 ' Plate Height										
Opening Width (ft)	Stud Data		Wind Load (psf)	Moment(lb-in)	Demand fb (psi)	Capacity F'b (psi)	Deflection		Deflection (1604.3.7)	
	\#	Size \& Grade					Δ (in) @ 42\%	Δ allow (in)	Δ (in) @ 60\%	Δ allow (in)
3	(1)	2x4 DF \#2	14.83	3655	597	2160	0.170	0.300	0.242	0.617
5	(1)	2x4 DF \#2	14.74	5311	867	2160	0.247	0.300	0.352	0.617
6	(2)	2x4 DF \#2	14.51	6052	659	2160	0.187	0.300	0.268	0.617
8	(2)	2x4 DF \#2	14.13	7499	816	2160	0.232	0.300	0.332	0.617
10	(3)	2x4 DF \#2	13.82	8906	727	2160	0.207	0.300	0.295	0.617
12	(3)	2x4 DF \#2	13.56	10282	839	2160	0.239	0.300	0.341	0.617
16	(4)	2x4 DF \#2	13.14	12954	846	2160	0.241	0.300	0.344	0.617
6	(1)	4x4 DF \#2	14.51	6052	593	2160	0.169	0.300	0.241	0.617
8	(1)	4x4 DF \#2	14.13	7499	735	2160	0.209	0.300	0.298	0.617
10	(1)	4x4 DF \#2	13.82	8906	872	2160	0.248	0.300	0.354	0.617
12	(1)	4x4 DF \#2	13.56	10282	1007	2160	0.286	0.300	0.409	0.617
16	(1)	4x6 DF \#2 (W)	13.14	12954	906	1872	0.258	0.300	0.368	0.617
10 ' Plate Height										
Opening Width (ft)	Stud Data		Wind Load (psf)	Moment (lb-in)	$\begin{aligned} & \hline \text { Demand } \\ & \mathrm{fb}(\mathrm{psi}) \end{aligned}$	Capacity F'b (psi)	Deflection		Deflection (1604.3.7)	
	\#	Size \& Grade					Δ (in) @ 42\%	Δ allow (in)	Δ (in) @ 60\%	$\Delta \mathrm{allow} \mathrm{(in)}$
3	(1)	2x4 DF \#2	14.49	4440	725	2160	0.256	0.333	0.366	0.686
5	(2)	2x4 DF \#2	14.49	6489	706	2160	0.250	0.333	0.357	0.686
6	(2)	2×4 DF \#2	14.34	7435	809	2160	0.286	0.333	0.409	0.686
8	(3)	2x4 DF \#2	13.96	9209	752	2160	0.266	0.333	0.380	0.686
10	(4)	2x4 DF \#2	13.65	10935	714	2160	0.252	0.333	0.361	0.686
12	(4)	2x4 DF \#2	13.39	12620	824	2160	0.291	0.333	0.416	0.686
16	(6)	2x4 DF \#2	12.97	15894	741	2160	0.262	0.333	0.374	0.686
6	(1)	4x4 DF \#2	14.34	7435	728	2160	0.257	0.333	0.368	0.686
8	(1)	4x6 DF \#2 (W)	13.96	9209	644	1872	0.228	0.333	0.325	0.686
10	(1)	4x6 DF \#2 (W)	13.65	10935	765	1872	0.270	0.333	0.386	0.686
12	(1)	4x8 DF \#2 (W)	13.39	12620	706	1872	0.250	0.333	0.357	0.686
16	(1)	4×10 DF \#2 (W)	12.97	15894	724	1728	0.256	0.333	0.366	0.686

King Stud Calculations

King stud calculations include deflection checked with 42% of strength level wind for noted deflection limit and 60% of strength level wind for deflection limit outlined in section 1604.3.7.
The wind pressures noted already account for the 60% of stregth level wind (conversion from strength to ASD).
The calculations below support the king stud schedules shown on the plans

Principal Code Equations \& General Data

$$
\mathrm{M}^{\prime}=\mathrm{F}_{\mathrm{b}}^{\prime} \mathrm{S} \quad \Delta=\frac{5 w \ell^{4}}{384 E I}
$$

Load Duration Factor (Wind):
1.6

Stud Calculations by Plate Height \& Opening Width (2x6 Walls, L/360 Deflection Limit)

10 ' Plate Height										
Opening Width (ft)	Stud Data		Wind Load (psf)	Moment (lb-in)	Demand fb (psi)	Capacity F'b (psi)	Deflection		Deflection (1604.3.7)	
	\#	Size \& Grade					Δ (in) @ 42\%	Δ allow (in)	Δ (in) @ 60\%	Δ allow (in)
3	(1)	2x6 DF Stud	14.49	4440	294	1120	0.075	0.333	0.108	0.686
5	(1)	2x6 DF Stud	14.49	6489	429	1120	0.110	0.333	0.158	0.686
6	(1)	2x6 DF Stud	14.34	7435	492	1120	0.126	0.333	0.181	0.686
8	(1)	2x6 DF Stud	13.96	9209	609	1120	0.157	0.333	0.224	0.686
10	(1)	2x6 DF Stud	13.65	10935	723	1120	0.186	0.333	0.265	0.686
12	(1)	2×6 DF Stud	13.39	12620	834	1120	0.214	0.333	0.306	0.686
16	(2)	2x6 DF Stud	12.97	15894	701	1120	0.180	0.333	0.257	0.686
6	(1)	4x6 DF \#2 (S)	14.34	7435	295	1872	0.066	0.333	0.095	0.686
8	(1)	4x6 DF \#2 (S)	13.96	9209	365	1872	0.082	0.333	0.117	0.686
10	(1)	4x6 DF \#2 (S)	13.65	10935	434	1872	0.098	0.333	0.139	0.686
12	(1)	4x6 DF \#2 (S)	13.39	12620	501	1872	0.113	0.333	0.161	0.686
16	(1)	4x6 DF \#2 (S)	12.97	15894	631	1872	0.142	0.333	0.203	0.686
12 ' Plate Height										
Opening Width (ft)	Stud Data		Wind Load (psf)	Moment (lb-in)	$\begin{aligned} & \hline \text { Demand } \\ & \mathrm{fb} \text { (psi) } \end{aligned}$	Capacity F'b (psi)	Deflection		Deflection (1604.3.7)	
	\#	Size \& Grade					Δ (in) @ 42\%	Δ allow (in)	Δ (in) @ 60\%	$\Delta \mathrm{allow}$ (in)
3	(1)	2x6 DF Stud	13.91	6199	410	1120	0.153	0.400	0.219	0.823
5	(1)	2x6 DF Stud	13.91	9060	599	1120	0.224	0.400	0.320	0.823
6	(1)	2x6 DF Stud	13.91	10490	694	1120	0.259	0.400	0.370	0.823
8	(1)	2×6 DF Stud	13.67	13116	867	1120	0.324	0.400	0.463	0.823
10	(2)	2x6 DF Stud	13.36	15566	686	1120	0.257	0.400	0.366	0.823
12	(2)	2x6 DF Stud	13.10	17958	792	1120	0.296	0.400	0.423	0.823
16	(2)	2x6 DF Stud	12.68	22600	996	1120	0.372	0.400	0.532	0.823
6	(1)	4×6 DF \#2 (S)	13.91	10490	416	1872	0.136	0.400	0.194	0.823
8	(1)	4x6 DF \#2 (S)	13.67	13116	520	1872	0.170	0.400	0.243	0.823
10	(1)	4×6 DF \#2 (S)	13.36	15566	617	1872	0.202	0.400	0.289	0.823
12	(1)	4x6 DF \#2 (S)	13.10	17958	712	1872	0.233	0.400	0.333	0.823
16	(1)	4x6 DF \#2 (S)	12.68	22600	897	1872	0.293	0.400	0.419	0.823

Stud Calculations Per 2018 NDS

The following stud calculations include deflection checked with 42% of strength level wind and a deflection limit of either L/240 or L/360 as outlined in the Stud Design Overview.
Load Combinations \& Principal Code Equations:

Load Combo \#1	$D+L+\left(L_{r}\right.$ or S or $\left.R\right)$	$\mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\min }^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
Load Combo \#2	$D+(0.6 W$ or $0.7 E)$	$\Delta=\frac{5 w \ell^{4}}{384 E I} \quad \mathrm{M}^{\prime}=\mathrm{F}_{\mathrm{b}}^{\prime} \mathrm{S}$

Location-Specific Stud Calculations

	Stud and Loading Data										
	Size \&	\# of	Height	Spacing	Nailing to Shtg	Loads (Tributary Lengths, ft)				Lateral Loads (psf)	
	Grade	Studs	(ft)	(in)		Roof	Floor	Public	Wall	Wind	Seismic
¢	2x6 DF Stud	1	10	16		12.835				14.5	2.7
	Calculations and Deflection Checks Using L/360 Deflection Limit										
	Load Combination	Loads		Stresses				Combined Stress	Deflection (in)		Fire Wall Assembly
		Axial	Moment	F'c	fc	F'b	fb		Δ @ 42\%	\allow	
	1	702	1000	662	85	1006	132	0.162	0.032	0.333	
	2	359	2899	719	44	1288	383	0.317	0.093	0.333	None
	3	616	2174	719	75	1288	287	0.255	0.070	0.333	

	Stud and Loading Data										
	 Grade	\# of Studs	Height (ft)	Spacing (in)	Nailing to Shtg	Loads (Tributary Lengths, ft)				Lateral Loads (psf)	
						Roof	Floor	Public	Wall	Wind	Seismic
	2x4 DF \#2	1	10	16		9.085				14.5	2.7
	Calculations and Deflection Checks Using L/360 Deflection Limit										
	Load Combination	Loads		Stresses				Combined Stress	Deflection (in)		Fire Wall Assembly
		Axial	Moment	F'c	fc	F'b	fb		Δ @ 42\%	¢allow	
	1	497	1000	386	95	1941	327	0.279	0.109	0.333	
	2	254	2899	391	48	2484	947	0.448	0.315	0.333	None
	3	436	2174	391	83	2484	710	0.405	0.236	0.333	

	Stud and Loading Data										
	Size \& Grade	\# of Studs	Height (ft)	Spacing (in)	Nailing to Shtg	Loads (Tributary Lengths, ft)				Lateral Loads (psf)	
						Roof	Floor	Public	Wall	Wind	Seismic
3	2x6 DF Stud	1	10	16		14.7938				5.0	1.3
\times	Calculations and Deflection Checks Using L/360 Deflection Limit										
.흥	Load Combination	Loads		Stresses				Combined Stress	Deflection (in)		Fire Wall Assembly
-		Axial	Moment	F'c	fc	F'b	fb		Δ @ 42\%	sallow	
	1	809	1000	662	98	1006	132	0.170	0.032	0.333	
	2	414	1000	719	50	1288	132	0.114	0.032	0.333	None
	3	710	750	719	86	1288	99	0.100	0.024	0.333	

harris \& sloan

Lateral Analysis Calculation Summary

Main Force-Resisting System (MFRS)

Resistance to lateral forces is provided by wood shearwalls and by manufactured shearwalls where required. Uplift forces at the wood shearwalls are resisted through metal strap holdowns at the third-to-second and second-to-first floor levels and metal holdowns at the foundation level.

Diaphragms, Chords, and Collectors

Lateral loads are transferred into the vertical elements of the MFRS using horizontal wood diaphragms, with collectors provided along each line of lateral force resistance. Note that diaphragms are modeled as flexible in accordance with ASCE 7-16 §12.3.1 Diaphragm forces are designed per ASCE 7-16 §12.10. The seismic collector load includes load from the shearwalls above plus the diaphragm load per ASCE Section 12.10. A 25\% increase is applied per Sections 12.10.2.1 \& 12.3.3.4.

Force Transfer at Opening

Shearwalls with openings have been designed using a rational analysis as permitted in the Force Transfer Around Openings method outlined in 2015 NDS SDPWS §4.3.5.2. Where the shearwall has sufficient capacity to transfer the loads around the opening without needing holdowns at the king studs, the Diekmann (SEAOC) method of analysis is used. Where the shearwall used does not have sufficient capacity, king stud holdowns are added and a simple static analysis is used (Drag-Strut). Note that traditional implementation of the drag-strut method has yielded underconservative horizontal strapping because engineers have typically not added the required holdown straps at the kings. Our implementation of the method includes the required holdown straps and is therefore an accurate method of analysis. In addition, when the drag-strut method is used the horizontal strap forces have been amplified by a factor of 2.0 to be more in alignment with the APA "drag-strut" method. The seismic capacity of the shearwall is adjusted according to the requirements of NDS SDPWS § 4.3.4 using the worst-case height-to-width ratio of the overall shearwall and the smaller wall piers within the wall. Also, as shown in the corresponding details on the framing plans (eg. detail $650 \& 658$) the shearwall sheathing is edge-nailed to the king studs for the full height of the shearwall. See the example calculation on the following page, which uses the Diekmann method.

Perforated Shearwalls

Shearwalls with openings that are not designed to transer forces around the openings are designed as perforated shearwalls in accordange with 2015 NDS SDPWS §4.3.5.3. The seismic capacity of the piers are adjusted according to the requirements of NDS SDPWS § 4.3.4. Also, as shown in the corresponding details on the framing plans (eg. detail 655) the shearwall sheathing is edgenailed to the king studs for the full height of the shearwall.

Force Transfer Around Opening Sample Calculation

Shear Wall w/ Force Transfer Around 2 Openings

Shear Wall Information

Shear Wall
Type $=3^{*}$
" $3 / 0^{*}$ SHEATHING W/ 8d COMMON NAILS AT 3 " OC EDGE AND $12{ }^{\circ}$ OC FIELD Capacity $=490$ plf (Seismic)
$\mathrm{H}: \mathrm{W}=\left(7^{\prime}-3^{\prime}+0.5^{\prime}\right) / 2^{\prime}=2.25$
General Notes:

- Diekmann method shown
- This line of lateral force resistance has one (1) shear wall
- Seismic Force, $V=4724 \mathrm{lb}$
- For simplicity, dead and wind loads are not considered in sample calculation

Shear Wall Design

H\&S Calculation P	ckage Design	Sample Calculation
Geometry	SW 1	Determine Analysis Method
Total Length (A)	21.00 ft	Check if there is additional uplift at king studs
To 1st Opening (B)	2.00 ft	No additional upiff
1st Opening Width (C)	5.00 ft	King stud holdowns are not required Check sill height
1st to 2nd Openings (\square	4.00 ft	Sivil Height of 3^{\prime} is greater than 1^{\prime}
2nd Opening Width (E)	6.00 ft	Wood structural panels exist both above and below the openings
2nd to 3rd Opening (F)		Check shear load against shearwall capacity
3rd Opening Width (G)		$\mathrm{V}=450 \mathrm{plf}$
Net Length	10.00 ft	450plf < 490plf
Max Header Height (H)	7.00 ft	holdowns at the king studs
Min Sill Height (J)	3.00 ft	- Use Diekmann Method
Plate Height (K)	9.00 ft	
H:W	2.25	Determine Wall Shears
Loads	Wind Seismic	@ Top/Bottom of Opening
Trib Length Roof		$\begin{aligned} & V_{\text {bows }}=\left(47241 \mathrm{l} \times 9^{\prime} / 21^{\prime}\right) /\left(9^{\prime}-\left(7-3^{\prime}\right)-0.5^{\prime}\right) \\ & V_{\text {kova }}=450 \mathrm{plf} \end{aligned}$
Trib Length Floor		@ Piers
Total Shear Load Add'I Uplift' Left	1768 lb 4724 lb	a $\mathrm{V}_{p o}=4724 \mathrm{lb} / 10^{\prime}$ $\mathrm{V}_{\mathrm{p}}=472 \mathrm{plf}$
King		@ Corners
Right		$V_{\text {wmo }}=472 \text { pif }-450 \text { pif } \times\left(21^{\prime}-10^{\prime}\right) / 10^{\prime}$ $V_{\text {cowa }}=-22 p l f$
SW Info Type	3	
Capacity	600 plf 490 plf	Determine Horizontal Strap Load
Analysis Method Used	Diekmann	
Shears TopdBottom	168 plf 450 plf	
Piers	$177 \text { plf } 472 \text { plf }$	- Use (2) CS16 straps (34101b capacity)
		Determine Uplift Force
Horiz. Strap Load Strap Specification	741 lb 1979 lb (2) CS16	$\begin{aligned} & \text { Uplift }=4724 \mathrm{lb} \times 9^{\prime} /\left(21^{\prime}-0.5^{\prime}\right) \\ & \text { Uplift }=2074 \mathrm{lb} \end{aligned}$
$\begin{array}{\|lr\|}\text { Total Uplift } & \begin{array}{r}\text { Left } \\ \text { King }\end{array} \\ & \text { Right }\end{array}$	776 lb 2074 lb 0 lb 0 lb 776 lb 2074 lb	- Use Type 2 holdown straps: (2) CS16 (34101b capacity)
Holdowns Left King Right	$\begin{array}{r} 2 \\ \text { NONE }^{\prime} \\ 2 \\ \hline \end{array}$	

Lateral Analysis Calculation: P1-1st Floor; Rear; Left to Right

Wall Location		Diaphragm Geometry			Additional Loads		
Level	1st Floor	Location	To Rear	To Front	Source		
Location of Line	Rear	Diaphragm Type	Simple	Simple	\% of Total		
Direction of Load	Left to Right	Diaphragm Width	0 ft	31 ft	Wind	0 lb	0 lb
Building Data		Diaphragm Depth	71 ft	71 ft	Seismic	0 lb	0 lb
Plate Height Above	0.00 ft	Structure Above	Pitched Ro	Pitched Roof	\% To Rear		
Plate Height Below	10.00 ft	Avg Height Above	12.58 ft	12.58 ft	\% To Front		
Rho (Left to Right)	1.0				\% Direct	100\%	100\%

Wind \& Seismic Loads

Wind Loading											
Location	Loading Condition	Wall (including gable)			Pitched Roof			Parapet		Add'\| Load	Total Wind
		Avg Area	Add'I Area	Pressure	Avg Area	Add'I Area	Pressure	Area	Pressure		
To Rear	Two-Sided	0 sf	0 sf	11.4 psf	0 sf	0 sf	8.8 psf	0 sf	23.4 psf	0 lb	0 lb
To Front	Two-Sided	76 sf	59 sf	11.4 psf	192 sf	-53 sf	8.8 psf	0 sf	23.4 psf	0 lb	2761 lb
Total		76 sf	59 sf		192 sf	-53 sf		0 sf		0 lb	2761 lb

Seismic Loading								
Location	Tributary Area	Add'l Area	Story Force	Add'l Load	Total Seismic	125% Seismic	Seismic Collector	
	0 sf	0 sf	0 lb					
To Front	1083 sf	-132 sf	1853 lb	0 lb	1853 lb	2316 lb	3011 lb	
Total	1083 sf	-132 sf	1853 lb	0 lb	1853 lb	2316 lb	3011 lb	

Shear Wall Calculations

Summary of Inputs (See Below)	4		Worst Case Design Values		
	\# of Walls		Wind Shear	227 plf	
Total Net Length	13.00 ft		Type Required	2	
Adjusted Length	8.50 ft		153 plf		Override
Seismic Shear			SW TYPE USED	N/A	

Shear Wall \& Holdown Calculations									
Net Length	Total Load Roof Trib	Additional Uplifts			Total Uplifts		Anchorage Spec	Holdown Spec	$\begin{gathered} \text { Add'l } \\ \text { Reinf KN } \end{gathered}$
Wall Height H:W Ratio	(W/E) Floor Trib	Wind	Seismic	Location	Wind	Seismic			
3.50 ft . - 286	796 lb - - - 2.0 ft	0 lb	0 lb		2465 lb	1598 lb	Corner	17	
10.00 ft . 2.86	534 lb	0 lb	0 lb		2465 lb	1598 lb	Typical	17	
$3.50 \mathrm{ft} .-2.86$	796 lb - - - 2.0 ft	0 lb	0 lb		2465 lb	1598 lb	Typical	17	
10.00 ft . $\quad 2.86$	534 lb	0 lb	0 lb		2465 lb	1598 lb	Corner	17	
$3.00 \mathrm{ft} .-3.33$	$585 \mathrm{lb}-1-2.0 \mathrm{ft}$	0 lb	0 lb		2177 lb	1413 lb	Corner	17	
10.00 ft . 3.33	392 lb	0 lb	0 lb		2177 lb	1413 lb	Typical	17	
3.00 ft - - 3.33	584.7 lb	0 lb	0 lb		2339 lb	1569 lb	Typical	17	
10.00 ft - $\quad 3.33$	392.3 lb	1762 lb	131 lb	3.0 ft	3516 lb	1700 lb	Corner	17	

- - -									

Vertical Lateral Elements Above Plate

Shear Panels in Roof

Length
Height
Trib Roof
Shear (W)
Shear (E)
Uplift (W)
Uplift (E)

Shearwall Deflection Calculations

$\delta_{e x}=\frac{8 v h^{3}}{E A b}+\frac{v h}{1000 G_{a}}+\Delta_{a} \frac{h}{b}$

Shearwall Construction	
Typical Wall Width	2×6
Sheathing Type	Ply

P1-1st Floor; Rear; Left to Right

Shearwall Deflection	
Deflection, δ_{ex}	0.33 in
Deflection, δ_{x}	1.33 in
Allowable Drift	2.40 in

Diaphragm Calculations

Summary of Inputs

Location	To Rear	To Front
Type	Simple	Simple
Width	0.0 ft	30.5 ft.
Depth	71.0 ft.	71.0 ft.

Chord Forces

Location	To Rear	To Front
w wind $^{181 ~ l b}$		

Diaphragm Deflections

Location	To Rear	To Front
Top Plates	(2) 2×4	(2) 2×4
Deflection, $\delta_{\text {ex }}$ (in)		0.13 in
Deflection, δ_{x} (in)		0.51 in

Collector Calculations

Lateral Analysis Calculation: P2-1st Floor; Front; Left to Right

Wall Location		Diaphragm Geometry			Additional Loads		
Level	1st Floor	Location	To Rear	To Front	Source		
Location of Line	Front	Diaphragm Type	Simple	Simple	\% of Total		
Direction of Load	Left to Right	Diaphragm Width	31 ft	0 ft	Wind	0 lb	0 lb
Building Data		Diaphragm Depth	71 ft	71 ft	Seismic	0 lb	0 lb
Plate Height Above	0.00 ft	Structure Above	Pitched Roor	Pitched Roof	\% To Rear		
Plate Height Below	10.00 ft	Avg Height Above	12.58 ft	12.58 ft	\% To Front		
Rho (Left to Right)	1.0				\% Direct	100\%	100\%

Wind \& Seismic Loads

Wind Loading											
Location	Loading Condition	Wall (including gable)			Pitched Roof			Parapet		Add'\| Load	Total Wind
		Avg Area	Add'I Area	Pressure	Avg Area	Add'I Area	Pressure	Area	Pressure		
To Rear	Two-Sided	76 sf	15 sf	11.4 psf	192 sf	-6 sf	8.8 psf	0 sf	23.4 psf	0 lb	2672 lb
To Front	Two-Sided	0 sf	0 sf	11.4 psf	0 sf	0 sf	8.8 psf	0 sf	23.4 psf	0 lb	0 lb
Total		76 sf	15 sf		192 sf	-6 sf		0 sf		0 lb	2672 lb

Seismic Loading							
Location	Tributary Area	Add'l Area	Story Force	Add'l Load	Total Seismic	125\% Seismic	Seismic Collector
To Rear	1083 sf	-58 sf	1998 lb	0 lb	1998 lb	2498 lb	3247 lb
To Front	0 sf	0 sf	0 lb				
Total	1083 sf	-58 sf	1998 lb	0 lb	1998 lb	2498 lb	3247 lb

Shear Wall Calculations

Summary of Inputs (See Below)		Worst Case Design Values		Shearwall Summary	
\# of Walls	2	Wind Shear	239 plf	Type Required	2
Total Net Length	12.00 ft	Seismic Shear	178 plf	Override	N/A
Adjusted Length	11.20 ft			SW TYPE USED	2

Shear Wall \& Holdown Calculations									
Net Length	Total Load Roof Trib	Additional Uplifts			Total Uplifts		Anchorage Spec	Holdown Spec	$\begin{gathered} \hline \text { Add'l } \\ \text { Reinf KN } \end{gathered}$
Wall Height H:W Ratio	(W/E) Floor Trib	Wind	Seismic	Location	Wind	Seismic			
$8.00 \mathrm{ft} .-1.25$	$1909 \mathrm{lb}-2.0 \mathrm{ft}$	0 lb	0 lb		2115 lb	1486 lb	Corner	17	
10.00 ft . $\quad 1.25$	1427 lb	0 lb	0 lb		2115 lb	1486 lb	Typical	17	
4.00 ft - - 250	763 lb - - - 2.0 ft	0 lb	0 lb		1966 lb	1423 lb	Corner	17	
10.00 ft . $\quad 2.50$	571 lb	0 lb	0 lb		1966 lb	1423 lb	Typical	17	

Vertical Lateral Elements Above Plate

Shear Panels in Roof

Length
Height
Trib Roof
Shear (W)
Shear (E)
Uplift (W)
Uplift (E)

Shearwall Deflection Calculations

$\delta_{e x}=\frac{8 v h^{3}}{E A b}+\frac{v h}{1000 G_{a}}+\Delta_{a} \frac{h}{b}$

Shearwall Construction	
Typical Wall Width	2×6
Sheathing Type	Ply

P2-1st Floor; Front; Left to Right

Shearwall Deflection	
Deflection, $\delta_{\text {ex }}$	0.28 in
Deflection, δ_{x}	1.11 in
Allowable Drift	2.40 in

Diaphragm Calculations

Summary of Inputs

Location	To Rear	To Front
Type	Simple	Simple
Width	30.5 ft	0.0 ft.
Depth	71.0 ft.	71.0 ft.

Chord Forces

Location	To Rear	To Front
$\mathrm{w}_{\text {wind }}$	175 lb	
$\mathrm{w}_{\text {seismic }}$	213 lb	
T/C Load	349 lb	0 lb

Diaphragm Deflections

Location	To Rear	To Front
Top Plates	(2) 2×4	(2) 2×4
Deflection, $\delta_{\text {ex }}$ (in)	0.13 in	
Deflection, δ_{x} (in)	0.51 in	

Collector Calculations

Lateral Analysis Calculation: P3-1st Floor; Left; Front to Back

Wall Location		Diaphragm Geometry			Additional Loads		
Level	1st Floor	Location	To Left	To Right	Source		
Location of Line	Left	Diaphragm Type	Simple	Simple	\% of Total		
Direction of Load	Front to Back	Diaphragm Width	0 ft	47 ft	Wind	0 lb	0 lb
Building Data		Diaphragm Depth	29 ft	29 ft	Seismic	0 lb	0 lb
Plate Height Above	0.00 ft	Structure Above	Pitched R	Gable Roof	\% To Left		
Plate Height Below	10.00 ft	Avg Height Above	12.50 ft	6.54 ft	\% To Right		
Rho (Front to Back)	1.0				\% Direct	100\%	100\%

Wind \& Seismic Loads

Wind Loading											
Location	Loading Condition	Wall (including gable)			Pitched Roof			Parapet		Add'\| Load	Total Wind
		Avg Area	Add'I Area	Pressure	Avg Area	Add'I Area	Pressure	Area	Pressure		
To Left	Two-Sided	0 sf	0 sf	11.4 psf	0 sf	0 sf	8.5 psf	0 sf	23.4 psf	0 lb	0 lb
To Right	Two-Sided	271 sf	0 sf	11.4 psf	0 sf	68 sf	8.8 psf	0 sf	21.7 psf	0 lb	3681 lb
Total		271 sf	0 sf		0 sf	68 sf		0 sf		0 lb	3681 lb

Seismic Loading								
Location	Tributary Area	Add'l Area	Story Force	Add'l Load	Total Seismic	125% Seismic	Seismic Collector	
	0 sf	0 sf	0 lb					
To Right	682 sf	0 sf	1328 lb	0 lb	1328 lb	1660 lb	2158 lb	
Total	682 sf	0 sf	1328 lb	0 lb	1328 lb	1660 lb	2158 lb	

Shear Wall Calculations

Summary of Inputs (See Below)	1		Worst Case Design Values		
$\#$		Wind Shear		Shearwall Summary	
\# Walls	10.00 ft		Seismic Shear	368 plf	
Total Net Length Required	43 plf		Override	N/A	
Adjusted Length	10.00 ft			SW TYPE USED	4

Shear Wall \& Holdown Calculations									
Net Length	Total Load Roof Trib	Additional Uplifts			Total Uplifts		Anchorage Spec	Holdown Spec	Add'IReinf KN
Wall Height H:W Ratio	(W/E) Floor Trib	Wind	Seismic	Location	Wind	Seismic			
10.00 ft - - 1.00	$3681 \mathrm{lb}-1.11 .8 \mathrm{ft}$	1586 lb	446 lb		3880 lb	1591 lb	Corner	17	
10.00 ft . $\quad 1.00$	1328 lb	0 lb	0 lb	0.0 ft	3059 lb	350 lb	Typical	17	

P3-1st Floor; Left; Front to Back

$$
\delta_{e x}=\frac{8 v h^{3}}{E A b}+\frac{v h}{1000 G_{a}}+\Delta_{a} \frac{h}{b}
$$

Shearwall Construction	
Typical Wall Width	2×6
Sheathing Type	Ply

Shearwall Deflection	
Deflection, $\delta_{\text {ex }}$	0.15 in
Deflection, δ_{x}	0.59 in
Allowable Drift	2.40 in

Diaphragm Calculations

Summary of Inputs

Location	To Left	To Right
Type	Simple	Simple
Width	0.0 ft	47.0 ft
Depth	29.0 ft.	29.0 ft.

Chord Forces

Location	To Left	To Right
157 lb		
$\mathrm{w}_{\text {wind }}$		92 lb
$\mathrm{w}_{\text {seismic }}$		
T/C Load	0 lb	1491 lb

Diaphragm Deflections

Location	To Left	To Right
Top Plates	(2) 2×4	(2) 2×4
Deflection, $\delta_{\text {ex }}$ (in)		0.70 in
Deflection, δ_{x} (in)		2.81 in

Collector Calculations

Lateral Analysis Calculation: P4-1st Floor; Interior; Front to Back

Wall Location		Diaphragm Geometry			Additional Loads		
Level	1st Floor	Location	To Left	To Right	Source		
Location of Line	Interior	Diaphragm Type	Simple	Simple	\% of Total		
Direction of Load	Front to Back	Diaphragm Width	47 ft	24 ft	Wind	0 lb	0 lb
Building Data		Diaphragm Depth	24 ft	31 ft	Seismic	0 lb	0 lb
Plate Height Above	0.00 ft	Structure Above	Pitched R	Pitched Roof	\% To Left		
Plate Height Below	10.00 ft	Avg Height Above	12.50 ft	12.50 ft	\% To Right		
Rho (Front to Back)	1.0				\% Direct	100\%	100\%

Wind \& Seismic Loads

Wind Loading											
Location	Loading Condition	Wall (including gable)			Pitched Roof			Parapet		Add'\| Load	Total Wind
		Avg Area	Add'I Area	Pressure	Avg Area	Add'I Area	Pressure	Area	Pressure		
To Left	Two-Sided	118 sf	0 sf	11.4 psf	294 sf	0 sf	8.5 psf	0 sf	23.4 psf	0 lb	3826 lb
To Right	Two-Sided	60 sf	81 sf	11.4 psf	150 sf	-78 sf	8.5 psf	0 sf	23.4 psf	0 lb	2215 lb
Total		178 sf	81 sf		444 sf	-78 sf		0 sf		0 lb	6041 lb

Seismic Loading								
Location	Tributary Area	Add'l Area	Story Force	Add'l Load	Total Seismic	125% Seismic	Seismic Collector	
	568 sf	2 sf	1112 lb	0 lb	1112 lb	1390 lb	1806 lb	
To Right	366 sf	-11 sf	692 lb	0 lb	692 lb	865 lb	1124 lb	
Total	934 sf	-9 sf	1804 lb	0 lb	$\mathbf{1 8 0 4} \mathrm{lb}$	2254 lb	2931 lb	

Shear Wall Calculations

Summary of Inputs (See Below)	1		Worst Case Design Values		Shearwall Summary
$\#$		Wind Shear		432 plf Walls	
Type Required	4				
Total Net Length	14.00 ft		Seismic Shear	129 plf	
Adjusted Length	14.00 ft			Sverride	N/A
				SW TYPE USED	4

Shear Wall \& Holdown Calculations									
Net Length	Total Load Roof Trib	Additional Uplifts			Total Uplifts		Anchorage Spec	Holdown Spec	$\begin{gathered} \hline \text { Add'I } \\ \text { Reinf KN } \end{gathered}$
Wall Height H:W Ratio	(W/E) Floor Trib	Wind	Seismic	Location	Wind	Seismic			
14.00 ft - - 0.71	$6041 \mathrm{lb}-$ - 2.0 ft	0 lb	0 lb		4080 lb	914 lb	Corner	17	
10.00 ft . $\quad 0.71$	1804 lb	0 lb	0 lb		4080 lb	914 lb	Interior	17	
----	--ー-----								
- - - - -									

P4-1st Floor; Interior; Front to Back

Shearwall Construction	
Typical Wall Width	2×6
Sheathing Type	Ply

Shearwall Deflection	
Deflection, $\delta_{\text {ex }}$	0.12 in
Deflection, δ_{x}	0.46 in
Allowable Drift	2.40 in

Diaphragm Calculations

Summary of Inputs

Location	To Left	To Right
Type	Simple	Simple
Width	47.0 ft	24.0 ft.
Depth	24.2 ft	30.5 ft.

Chord Forces

Location	To Left	To Right
$\mathrm{w}_{\text {wind }}$	163 lb	185 lb
$\mathrm{w}_{\text {seismic }}$	77 lb	94 lb
T/C Load	1860 lb	436 lb

Diaphragm Deflections

Location	To Left	To Right
Top Plates	(2) 2×4	(2) 2×4
Deflection, $\delta_{\text {ex }}$ (in)	0.90 in	0.19 in
Deflection, δ_{x} (in)	3.59 in	0.76 in

Collector Calculations

Lateral Analysis Calculation: P5-1st Floor; Right; Front to Back

Wall Location		Diaphragm Geometry			Additional Loads		
Level	1st Floor	Location	To Left	To Right	Source		
Location of Line	Right	Diaphragm Type	Simple	Simple	\% of Total		
Direction of Load	Front to Back	Diaphragm Width	24 ft	0 ft	Wind	0 lb	0 lb
Building Data		Diaphragm Depth	31 ft	31 ft	Seismic	0 lb	0 lb
Plate Height Above	0.00 ft	Structure Above	Gable Roof	Pitched Roof	\% To Left		
Plate Height Below	10.00 ft	Avg Height Above	6.41 ft	12.50 ft	\% To Right		
Rho (Front to Back)	1.0				\% Direct	100\%	100\%

Wind \& Seismic Loads

Wind Loading											
Location	Loading Condition	Wall (including gable)			Pitched Roof			Parapet		Add'I Load	Total Wind
		Avg Area	Add'I Area	Pressure	Avg Area	Add'I Area	Pressure	Area	Pressure		
To Left	Two-Sided	137 sf	42 sf	11.4 psf	0 sf	0 sf	8.8 psf	0 sf	21.7 psf	0 lb	2038 lb
To Right	Two-Sided	0 sf	0 sf	11.4 psf	0 sf	0 sf	8.5 psf	0 sf	23.4 psf	0 lb	0 lb
Total		137 sf	42 sf		0 sf	0 sf		0 sf		0 lb	2038 lb

Seismic Loading							
Location	Tributary Area	Add'I Area	Story Force	Add'l Load	Total Seismic	125\% Seismic	Seismic Collector
To Left	366 sf	0 sf	713 lb	0 lb	713 lb	892 lb	1159 lb
To Right	0 sf	0 sf	0 lb				
Total	366 sf	0 sf	713 lb	0 lb	713 lb	892 lb	1159 lb

Shear Wall Calculations

Summary of Inputs (See Below)		Worst Case Design Values		Shearwall Summary	
\# of Walls	2	Wind Shear	249 plf	Type Required	2
Total Net Length	9.00 ft	Seismic Shear	87 plf	Override	N/A
Adjusted Length	8.20 ft			SW TYPE USED	2

Shear Wall \& Holdown Calculations									
Net Length	Total Load Roof Trib	Additional Uplifts			Total Uplifts		Anchorage Spec	Holdown Spec	Add'IReinf KN
Wall Height H:W Ratio	(W/E) Floor Trib	Wind	Seismic	Location	Wind	Seismic			
$4.00 \mathrm{ft} .-250$	795 lb - - 12.0 ft	0 lb	0 lb		1943 lb	370 lb	Typical	17	
10.00 ft . 2.50	278 lb	0 lb	0 lb		1943 lb	370 lb	Typical	17	
5.00 ft.	$\underline{1243} 43 \mathrm{lb}-1.2 .0 \mathrm{ft}$	0 lb	0 lb		2350 lb	435 lb	Typical	17	
10.00 ft . $\quad 2.00$	435 lb	0 lb	0 lb		2350 lb	435 lb	Corner	17	

P5-1st Floor; Right; Front to Back

$$
\delta_{e x}=\frac{8 v h^{3}}{E A b}+\frac{v h}{1000 G_{a}}+\Delta_{a} \frac{h}{b}
$$

Shearwall Construction	
Typical Wall Width	2×6
Sheathing Type	Ply

Shearwall Deflection		
Deflection, $\delta_{\text {ex }}$	0.13 in	
Deflection, δ_{x}	0.51 in	
Allowable Drift	2.40 in	

Diaphragm Calculations

Summary of Inputs

Location	To Left	To Right
Type	Simple	Simple
Width	24.0 ft	0.0 ft.
Depth	30.5 ft	30.5 ft.

Chord Forces

Location	To Left	To Right
$\mathrm{w}_{\text {wind }}$	170 lb	
$\mathrm{w}_{\text {seismic }}$	97 lb	
T/C Load	401 lb	0 lb

Diaphragm Deflections

Location	To Left	To Right
Top Plates	(2) 2×4	(2) 2×4
Deflection, $\delta_{e x}$ (in)	0.18 in	
Deflection, δ_{x} (in)	0.70 in	

Collector Calculations

Shearwall Table

Shearwall Capacities			
Type	Wind	Seismic	Description of Wall Construction
$\mathbf{1 2}$	970	770	15/32" APA RATED SHEATHING ONE FACE WITH 10d COMMON NAILS AT 2" O.C. EDGE AND 12" O.C. FIELD. INSTALL 3X NOMINAL FRAMING MEMBERS AT ADJOINING PANEL EDGES WITH STAGGERED NAILING. HOLDOWNS AS SPECIFIED IN CALCULATIONS.
$\mathbf{4}$	750	640	3/8" APA RATED SHEATHING ONE FACE WITH 8d COMMON NAILS AT 2" O.C. EDGE AND 12" O.C. FIELD. INSTALL MINIMUM 3X NOMINAL FRAMING MEMBERS AT ADJOINING PANEL EDGES WITH STAGGERED NAILING. MAX. HOLDOWNS AS SPECIFIED IN CALCULATIONS.
$\mathbf{2}$	350	350	3/8" APA RATED SHEATHING ONE FACE WITH 8d COMMMON NAILS AT 4" O.C. EDGE AND 12" O.C. FIELD. HOLDOWNS AS SPECIFIED IN CALCULATIONS.

NOTES:

1. Shearwalls are designated on the plans by a triangle symbol surrounding the shearwall type.
2. Shearwall length is indicated above the shearwall callout and is shown graphically with shading \& a dashed line.
3. See anchor bolt calculations for required anchor spacing.

Holdown Table

NOTES:

1. Holdowns are designated on the plans by a diamond symbol surrounding the holdown type, egg.:

Calculations For Anchor Bolts \& Mudsill Anchors At Shearwalls

Allowable loads per NDS/hardware values (1.6 load duration factor)							
Load Source	$\begin{aligned} & \hline \text { Sill Plate } \\ & \text { Size } \end{aligned}$	1/2" ¢ A.B.	5/8" ϕ A.B.	Simpson MASA			$\begin{aligned} & \hline \text { USP FA4 } \\ & \text { (1 of } 3 \text { up) } \end{aligned}$
				standard	one leg up	(1) of (3) up	
Wind	2x	650\#	930\#	1475\#	965\#	1305\#	1135\#
	3 x	770\#	1180\#	1165\#	760\#	1030\#	0\#
Seismic	2x	650\#	930\#	1235\#	845\#	1105\#	1035\#
	3 x	770\#	1180\#	1020\#	685\#	908\#	0\#

Notes:

1. Shading indicates spacing used in shearwall schedule
